**Graphing** an **exponential function**: y = a∙bx standard form of an **exponential function** a = y-intercept b = base x = **exponent** (0, a) Example 1: **Graphing Exponential Functions** Sketch the **graph** of y = 4 x and identify its domain and range. The logarithm **functions** can also be solved by changing it to **exponential** form. How to **Graph Logarithmic Functions**?. The **exponential function** f(x) = bx is one-to-one, with domain ( − ∞, ∞) and range (0, ∞). Therefore, it has an inverse **function**, called the **logarithmic function** with base b. For any b > 0, b ≠ 1, the **logarithmic function** with base b, denoted logb, has domain (0, ∞) and range ( − ∞, ∞) ,and satisfies. logb(x) = y.

76 **Exponential and Logarithmic Functions** 5.2 **Exponential Functions** An **exponential function** is one of form f(x) = ax, where is a positive constant, called the base of the **exponential function**. For example f(x)=2x and f(x)=3x are **exponential functions**, as is 1 2 x. If we let a =1in f(x) xwe get , which is, in fact, a linear **function**. For this reason we agree that the base of an **exponential**. Provide a rough sketch of each type of **function** with a base of \( b>1 \). Be sure to label any asymptotes and intercepts. Question: How are the **graphs** of **exponential functions and logarithmic functions** related? Provide a rough sketch of each type of **function** with a base of \( b>1 \). Be sure to label any asymptotes and intercepts.

A) 64 B) 46,656 C) 12 D) 36 1) 2) Let f(x) = 1 6 x. Algebra 2 - Unit 7: **Exponential and Logarithmic Functions**. 02/05 - **Exponential** Growth. Notes: **Exponential** Growth. Selected Answers ... Worksheet 3 **Graphing Exponential Functions** Answers When somebody should go to the book stores, search commencement by shop, shelf by shelf, it is in.